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Abstract
Tractor guidance (TG) improve environmental gains relative to nonprecision

technologies; however, studies evaluating how tractor operator experience for

nonguidance comparisons affect gains are nonexistent. This study explores spatial

relationships of overlaps and gaps with operator experience level (0–1, 2–3, 6+ yr)

during fertilizer and herbicide applications based on terrain attributes. Tractor paths

recorded by global navigation satellite systems were used to create overlap poly-

gons. Results illustrate operator experience level is critical for better efficiency gains

estimation (for non-TG comparisons). Operators with 6+ yr of experience reduced

overlap by 7.7 and 20.6% compared with operators with 2–3 and 0–1 yr of experience,

respectively. New operators had consistently higher overlap across all slope (<0.5,

0.5–1, 1–2, 2–5, 5–9, and 9–15%) and roughness classes (<0.1, 0.1–0.2, 0.2–0.3,

0.3–0.5, 0.5–0.7, 0.7–1 and >1). A low interpersonal reliability value of 0.02–0.03

indicates operator experience is crucial to estimate TG efficiency gains and consistent

drivers experience levels are needed when evaluating economic and environmental

gains from TG.

1 INTRODUCTION

Tractor guidance (TG) systems are a type of precision agricul-

ture technology that uses global navigation satellite systems

(GNSS) to mechanically steer tractor paths during field oper-

ations. Spatially precise applications of nitrogen (N) and

phosphorus (P), through the use of auto-guidance systems,

improve crop production and reduce non-point source pol-

lution across agricultural landscapes, relative to non-GNSS

enabled technologies (Shockley et al., 2011). Specifically,

Kharel et al. (2020a) reported 6 and 16% reductions in

input overlaps (double applications) and gaps (no applica-

Abbreviations: GNSS, global navigation satellite systems; IPR,

interpersonal reliability; TG, tractor guidance.
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tion), respectively, via TG systems. Greater effective spatial

coverages can translate to less labor, lower greenhouse gas

emissions and non-point source pollution, and greater cost

savings per unit area (Lindsay et al., 2018). However, in

a follow-up study, Kharel et al. (2020b) found that factors

such as terrain attributes (increased slope, variable topogra-

phy) and field shape and irregularity drive the extent of these

efficiency gains relative to non-TG systems. Other important

factors, such as operator experience level for the non-TG com-

parison, likely also affect efficiency gain estimates; however,

evaluations of driver experience have not been done to date.

Previous work by Ashworth et al. (2018) found that TG

led to total farm-level carbon equivalent emission reductions

of 15.7, 3.5, and 9.6 Mg for cotton (Gossypium hirsutum
L.), soybean [Glycine max (L.) Merr.], and cotton–soybean
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mixed operations, respectively. These results highlight that

emission reductions are crop, amount, and agro-input spe-

cific. Additional work by Ashworth et al. (2022) found that

fertilizer source (organic vs. inorganic) greatly affected envi-

ronmental benefits from TG via a life cycle assessment. In this

assessment, poultry litter had fewer environmental gains than

inorganic N, owing to the rate of volatilization for poultry lit-

ter under IPCC Tier 1 methods (IPCC, 2006) being twice that

of synthetic sources, as well as fewer yield gains under the

organic source.

This study set out to explore the effect of operator expe-

rience level (0–1, 2–3, 6+ yr) during fertilizer (organic and

inorganic) and herbicide applications and based on terrain

attributes, relative to precision guidance tools. We predicted

that the greatest operator experience level (6+ yr) scenario

would have the fewest overlaps and gaps and, consequently,

the least environmental gains during agro-input applications

relative to precision guidance systems.

2 MATERIALS AND METHODS

2.1 Field experiment, data collection, and
whole field overlap estimation

This study was conducted at Booneville, AR, USA

(35.087723 N, 93.993740 W) in 2018 and 2019. The details

of the field study, data collection, and overlap estimation

methodology for 2018 data are available in Kharel et al.

(2020a, 2020b). A New Holland 7040 (NH7040) tractor

was used without TG (manually driven) in six fields (11.7–

22.5 ha) with a 10-m fertilizer spreader and a 13-m boom

sprayer from 2018–2019. Three operator experience levels

where Operator A had 6+ yr tractor driving experience,

Operator B had 2–3 yr experience, and Operator C had 0–1

yr experience were used for this study. Operator A applied

fertilizer in 2018, Operator B applied herbicide in 2019,

and Operator C applied fertilizer in 2019 for the same six

pasture fields. Intelliview IV display (CNH), 372 receiver,

and RTX signal (Trimble Navigation Ltd.) with 15-cm pass

to pass accuracy as a navigation system were used by each

operator. Kharel et al. (2020a) reported that there was no

statistical difference in overlap and gap due to operation

(fertilizer and herbicide application); hence, we combined

these datasets from both operations to evaluate the effect of

driver experience.

Overlap and gap information were calculated as described

in Kharel et al. (2020a, 2020b). Briefly, data points (trac-

tor location recorded each second during field operations)

showing more than 35˚ difference in heading direction were

assigned a new pass number in increments. A line feature was

created for each pass and a buffer polygon around the line

Core Ideas
∙ Tractor operator experience level affects overall

production efficiencies.

∙ Operator experience affects total overlap area.

∙ Efficiency calculations should consider operator

experience level.

feature was developed using equipment width. For each opera-

tion within a field, individual pass polygons were sequentially

evaluated with the rest of pass polygons and the overlap por-

tions were developed as overlap polygons for further analysis.

Gap area was then calculated by subtracting pass polygon and

overlap polygon area from the field boundary area as shown

by Equation 1 in Kharel et al. (2020a). Both overlap and gap

area were expressed relative to field boundary area in per-

centage for statistical analysis. Since gap area was calculated

for whole field and no gap polygons were created within a

field, the majority of analysis on this paper focuses on overlap

polygons.

2.2 Terrain attributes and grid sampling

Terrain attribute data for the study site were prepared at

10- × 10-m resolution after resampling of (1- × 1-m) ele-

vation data derived from laser sensor Light Detection and

Ranging (LiDAR, USDA-Geospatial Data Gateway, https://

datagateway.nrcs.usda.gov) as described in Kharel et al.

(2020b). Terrain attributes slope (Horn, 1981) and rough-

ness (Wilson et al., 2007) affected overlap in a previous

study (Kharel et al., 2020b), and hence we further explored

these attributes with respect to driver experience in this study.

Briefly, a 50- × 50-m sampling grid was overlaid on top of

terrain attribute raster (slope and roughness index) and over-

lap polygon. Within each 2,500-m2 grid (6,565 total number

of grid samples), average overlap area and median terrain

attribute values were extracted. Terrain attribute values were

classified into six (slope) and seven (roughness) classes based

on range of value extracted. Average overlap area per grid

(m2/2,500 m2) for each terrain class was calculated. A total of

85 observations for slope and 116 observations for roughness

class were used to evaluate how driver experience level inter-

acts with terrain to affect overlap (relative to TG-systems). R

(R Core Team, 2021) computing environment with the ‘raster’

(Hijmans, 2021) package was used to resample and calculate

terrain attributes.

https://datagateway.nrcs.usda.gov
https://datagateway.nrcs.usda.gov
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2.3 Statistical analysis

A two-step analysis was conducted for inferential statistics.

Fixed-effect ANOVA models were developed to estimate

operator experience effect on overlap and gap, while random-

effect models were used to estimate variance associated with

operator and field relative to unexplained variance (error

variance):

𝑌𝑖𝑗 = μ + 𝑎𝑖 + ε𝑖𝑗 ; with ε𝑖𝑗 i.i.d. ∼ N
(
0, σ2

)
(1)

𝑌𝑖𝑗𝑘 = μ + 𝑎𝑖 + 𝑏𝑗 + (𝑎𝑏)𝑖𝑗 + ε𝑖𝑗𝑘; with ε𝑖𝑗𝑘i.i.d. ∼ N
(
0, σ2

)
(2)

𝑌𝑖𝑗𝑘 = μ + ∝𝑖 + β𝑗 + ε𝑖𝑗𝑘; with α𝑖i.i.d. ∼ N
(
0, σ2α

)
, β𝑖i.i.d.

∼ N
(
0, σ2β

)
, and ε𝑖𝑗𝑘i.i.d. ∼ N

(
0, σ2

)
(3)

where Yij/Yijk is overlap or gap estimate per field or grid

sample, μ is grand mean across all the fields or grid

samples, ai is operator fixed effects (i = 1–3), i.i.d. is inde-

pendent and identically distributed, bj is terrain attribute

(slope or roughness index) fixed effect (j = 1–6 for slope

class and 1–7 for roughness class), (ab)ij is operator and

terrain attribute interaction fixed effect, ∝I is operator ran-

dom effect, βj is field random effect (j = 1–6), ε is error

(random) term, and σ2 is variance associated with ran-

dom variables (operator, field and error). Equations 1 and 2

are fixed effect models, and Equation 3 is a random-effect

model.

Operator experience, slope class, roughness class and their

interactions were considered fixed factors while fields and

grids (with ‘Grid sample’ data) were considered random repli-

cation in fixed effect models (Table 1, Models 1–5). In the

random-effect model (Table 1, Models 6–7), both field and

operator experience were considered random factors. Mod-

els 1, 2, and 6 were developed using whole field dataset (6

fields × 3 operators = 18 observations), Models 3 and 7 were

developed using all 50- × 50-m grid samples (6,565 total

observations), and Models 4 (85 observations for slope class)

and 5 (116 observations for roughness class) were developed

after classifying each grid within a field to one of the ter-

rain attributes classes. For each model, null hypothesis (effect

column) was tested against P < .05 (Pr > F column). All mod-

els were developed using R computing software. R package

‘lme4’ (Bates et al., 2015) was used to develop random-effect

models.

Variance extracted from random-effect models (Models 6–

7) was used to develop interpersonal reliability (IPR, Bartlett

& Frost, 2008; Kharel et al., 2019) as follows:

IPR = Field variance
Field variance + Operator variance + Error variance

(4)

The IPR value ranges between 0 and 1, with higher values

indicating better reliability among operators.

3 RESULTS AND DISCUSSION

3.1 Operator experience level effect on
efficiency gains for TG-Off comparison

Operator experience level affected overlaps at both whole-

field (Table 1, Model 1) and grid-sample levels (Table 1,

Model 3). Overlap differed (P < .05) by 7.8, 15.5 and 28.4%

for Operator A, B, and C, respectively, at whole-field lev-

els (Figure 1a). This result suggests an experienced operator

reduces overlap by 7.7 and 20.6% compared with a driver with

2–3 yr experience and new operator, respectively. Similarly,

at a grid-sample scale (per 2,500-m2 area), overlap increased

(P < .05) by 17.7, 68, and 88 m2 for Operator A, B,

and C, respectively. This suggests again a large increase in

overlapped field areas receiving agro-chemical application

from Operator A to B and C, suggesting drivers’ experi-

ence level is an important factor for TG efficiency gain

calculations.

Gap area (% relative to field boundary) was not affected

(P > .05) by operator experience levels (Table 1, Model 2),

and averaged 25.2, 21.6, and 23.6% of field boundary area

for Operator A, B, and C, respectively (Figure 1b). Kharel et

al. (2020a) reported overlap of 3–11% and gap of 15–31%

in these fields when TG was off previously. The large gap

on these fields was explained as the result of unavoidable

obstacles (tree, ponds, etc.).

Kharel et al. (2020a) reported an overall efficiency gain

(spatial coverage) of 8% by TG system over non-TG sys-

tem. Calculation was based on the most-experienced operator

(6+ yr). If we use driver experience effect on those calcu-

lations, efficiency gains will be much higher with non- or

less-experienced operator as illustrated above by 7.7–20.6%

more overlap by these two operators.

3.2 Terrain attributes and operator
experience level effect on overlap

Interaction between terrain attribute slope class and opera-

tor experience was observed for overlap area (Table 1, Model

4). Overlap area ranged from 14 m2 per grid (2,500 m2) for

Operator A with slope class 1–2% to 196 m2 for Operator B

with slope class 9–15%. Operators B and C had higher over-

lap at each slope class compared with Operator A (Figure 1c).
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F I G U R E 1 Least square means and their standard error after linear (fixed effect) ANOVA model. (a) Overlap area (% to boundary area) by

three operators, (b) gap area (% to boundary area) by three operators, (c) overlap area (m2/2500 m2 grid) by three operators for slope class, and (d)

overlap area (m2/2500 m2 grid) by three operators for each roughness class. Operators’ experience levels were 0–1, 2–3, and 6+ yr. Bars are standard

error

Overlap increased for the higher slope class with Operators

A and B, as they showed more control in relatively flat area

compared with the inexperienced Operator C. Surprisingly,

Operator B had very high overlap in greater slopped terrain

(slope class 9–15%). Averaged across slope class, overlap

area was 22, 85, and 76 m2 per grid for Operator A, B, and

C, respectively. Similarly, averaged across operator, overlap

area was 52, 51, 53, 57, 49, and 103 m2 per grid for slope

class <0.5, 0.5–1, 1–2, 2–5, 5–9, and 9–15%, respectively.

Terrain attribute roughness class had no effect (P > .05) on

overlap area or in interaction with operator experience level

(Table 1, Model 5). This could be due to higher variabil-

ity introduced into the dataset by the inexperienced operator.

Averaged across roughness class, operator experience level

resulted in different (P < .05) overlap for each operator: 16,

62, and 88 m2 per grid for Operator A, B, and C, respec-

tively. As with slope class, Operators B and C had greater

overlap compared with Operator A at each roughness class

(Figure 1d). As opposed to previous results, where both

slope and roughness classes were important factors deter-

mining overlap (with a single-experience operator; Kharel

et al., 2020b), the present study introduced more variability

by adding an inexperienced operator. Therefore, the interac-

tion of operator with terrain attributes resulted in no effects in

our current study.

3.3 Comparison of variability due to
operator

At whole-field levels, 52.6% of total variability (95.1 out of

180.8) was due to operator variability and 44% remained as

unexplained error variance (Table 1, Model 6). Hence, IPR

among operator was very low (0.03). At the grid-sample level,

variability due to operator decreased to 17% (1,428 out of

total 8,618), but unexplained error variance increased to 81%

(Model 7). Hence, the IPR value further decreased to 0.02

at the grid-sample level. At both scales (field and grid sam-

ple), low IPR values indicate that TG efficiency estimation

methods should consider operator experience as a critical fac-

tor while doing such comparison. Kharel et al. (2019) used

a similar approach to compare yield monitor data cleaning

consistency among three individuals and, with the observed

IPR value between 0.82 and 0.99, concluded person-to-person

variability was smaller and results should be compara-

ble. For IPR analysis, when at least three people and 30



6 of 7 KHAREL ET AL.

samples are involved, values between 0.75 and 0.90 indicate

good reliability (Koo & Li, 2016).

4 CONCLUSIONS

Adoption of TG systems has increased by 50–60% of total

acres used to grow major row crops in the United States;

however, to date TG technologies are not widely used for

either smaller-scale production or pasture-based systems, and

more information is needed regarding how efficiency esti-

mates from TG in pasture systems are affected by operator

level of experience (for TG-Off comparisons). Three opera-

tors with varying experience levels (0–1; 2–3; 6+ yr) applied

fertilizer and herbicide on the same six fields from 2018 to

2019. Tractor paths recorded by GNSS were used to create

overlap polygons. Results showed that operator experience

level is critical when making efficiency gain estimates and

operators with 6+ yr of experience reduced overlap 7.7 and

20.6% compared with 2–3 yr of experience and new operators,

respectively. Similarly, the experienced operator responded

during field operations to field slope and roughness, whereas

the inexperienced operator had consistently higher overlap

across all terrain attribute classes. A low IPR value (0.02–

0.03) indicated that operator experience is crucial to estimate

TG efficiency and a similar driver experience level is needed

when estimating TG efficiency gains.
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